Precalculus

7-09 Polar Graphs of Conics

Alternative Definition of a Conic Section

- Locus of a point in the plane that moves so its distance from a fixed \qquad (\qquad) is in a constant ratio to its distance from a fixed \qquad (
- The ratio is the \qquad (e).
$e<1$ ellipse

$e>1$ hyperbola
5π
\qquad to \qquad
- One focus is \qquad
- The conic bends \qquad
the focus and from directrix

Vertical Directrix

Horizontal Directrix

Right of pole: $r=\frac{e p}{1+e \cos \theta}$

Left of pole: $r=\frac{e p}{1-e \cos \theta}$

Created by Richard Wright - Andrews Academy

Above pole: $r=\frac{e p}{1+e \sin \theta}$

Below pole: $r=\frac{e p}{1-e \sin \theta}$

To be used with Richard Wright's Precalculus

Identify the type of conic $r=\frac{2}{2+\cos \theta}$

Find the polar equation of the parabola whose focus is the pole and directrix is the line $x=-2$.

Find the polar equation of the hyperbola with focus at pole and vertices $\left(1, \frac{3 \pi}{2}\right)$ and $\left(-9, \frac{\pi}{2}\right)$.

